Image Acquisition
Human Visual System
The eye is nearly a sphere; with average diameter
of approximately 20mm. There are three membranes enclosed the eye namely
cornea, sclera and choroid. The lens is flexible and attached to the ciliary body.
Figure 2.1 depicts the simplified horizontal cross section of the human eye.
Figure 2.1 – Cross section
of Human Eye
When the eye is properly focused, light from
objects outside the eye is imaged on the retina. Pattern vision is afforded by
the distribution of discrete light receptors over the surface of the retina. There
are two classes of receptors, cones and rods. The cones are located primarily
in the central portion of the retina, called the fovea, and are highly
sensitive to color. Muscles controlling the eye rotate the eye ball until the
image of an object of interest falls on the fovea. Cone vision is called
photopic or bright color vision. Rods serve to give a general overall picture
of the field of view. They are not involved in color vision and are sensitive
to low levels of illumination (dim-light vision). For the interpretation
purposes, we can consider the fovea as a square sensor array of size 1.5 mm *
1.5 mm. Figure 2.2 clearly depicts how cones and rods are organized in the
retina.
Figure 2.2 –
Organization of the Rods and Cones and Optic Nerve
The major difference between the lenses in the
human eye and ordinary optical lens is that the lens in the human eye is flexible.
The distance between the centre of the lens and the retina (called the focal
length) varies from approximately 17mm to about 14 mm, as the refractive power
of the lens increases from is minimum to maximum. When the lens focuses on far
object (more than 3m) it exhibits its lower refractive power and it is happen
opposite way when it is focused on closer object. This information makes it
easy to calculate the size of the retinal image as shown in the following
example.
15 m /100 m = H/ 17mm
H = 2.55 mm
This retinal image is reflected primarily in the
area of the fovea. Perception then takes place by the relative excitation of
light receptors, which transform radiant energy into electrical impulses that
are ultimately decoded by the brain.
Light and the EM Spectrum
As shown in the figure 2.3, the range of color we
perceive in visible light represents a very small portion of the EM spectrum.
Figure 2.3 – Visible
Band extracted from EM Spectrum
The EM spectrum can be expressed in the terms of
wavelength (λ), frequency or energy (ν) as shown below.
λ = c / ν --> (1) where c is the speed of light (2.998 * 108 m/s)
The energy of the various components of the EM
spectrum is given by the expression;
E = h ν --> (2) where h is Planck’s constant.
Frequency is measured in Hertz (Hz), with 1Hz being
equal to one cycle of a sinusoidal wave per second. The commonly used unit of
energy is the electron-volt.
Electromagnetic waves are conceptually sinusoidal
and formation of different wave lengths. It can be thought of as a stream of
massless particles, each travelling in a wave like pattern and moving at the
speed of light. Each massless particle contains a certain amount of energy and
a bundle of energy is known as photon. According to the equation (2) energy is
proportional to the frequency. Therefore for higher frequency bands in EM
spectrum carries more energy per photon and lower frequency bands in EM spectrum
carries lower energy per photon.
Light is the particular type of EM radiation that
can be visible and sense by the human eye. The visible band of the EM spectrum
spans the range from approximately 0.43 micrometer (violet) to about 0.79
micrometer (red). The color spectrum divided into six broad regions; violet,
blue, green, yellow, orange and red. No color ends abruptly, but rather each
range blends smoothly into the next as shown in the figure 2.3. The colors that
human perceive in an object are determine by the nature of the light reflected
from the object. The light that is void of color is called achromatic or
monochromatic light. The only attribute of such light is its intensity, or
amount. The term gray level generally is used to describe monochromatic
intensity because it ranges from black to gray and finally to white. Chromatic
light spans the EM energy spectrum from approximately 0.43 to 0.79 micrometers,
as noted previously. Three basic quantities are used to describe the quality of
a chromatic light source; radiance, luminance and brightness. Radiance is a
total amount of energy that flows from the light source and it is usually measured
in watts (W). Luminance measure in lumen (lm), gives the measure of the amount
of energy and observer perceives from light source. Brightness is a subjective
descriptor of light perception that is particularly impossible to measure.
Image Sensing and Acquisition
Depending on the nature of the source, illumination
energy is reflected from, or transmitted through, objects. As an example we can
say light reflected from planer surface and X ray transmitted through the human
body to construct the images. In some applications, the reflected or
transmitted energy is focused on to a photo converter, which converts the
energy into a visible light. Electron microscopy and some applications on Gamma
imaging use this approach.
Image Acquisition using Single Sensor
Figure 2.4 – Single image
sensor
Figure 2.4 depicts the main components of the
single image sensor. Perhaps the most familiar sensor of this type is the
photodiode, which is constructed of silicon materials and whose output voltage
waveform is proportional to light. The use of a filter in front of a sensor
improves selectivity. For example, a green filter in front of a light sensor favors
light in the green band of the color spectrum. As a consequence, the sensor
output will be stronger for green light than for other components in the
visible spectrum. In order to generate a 2D image using a single sensor, there
has to be relative displacements in both the x and y directions
between the sensor and the area to be imaged.
Image Acquisition using Sensor Strips
Schematic of sensor strip is shown in the figure
2.5. Geometry is used much more frequently in this method.
Figure 2.5 – Line sensor
The strip provides imaging elements in one
direction. Motion perpendicular to the strip provides imaging in the other
direction as shown in the figure 2.6. This is the type of arrangement used in
most flat bed scanners.
Figure 2.6 – Image acquisition
using sensor strip
Sensor strips mounted in a ring configuration are
used in medical and industrial imaging to obtain cross sectional images of 3D
objects. This method was depicted in the figure 2.7. CAT, MRI and PET imaging are
used this concept to produce images. Images are not obtained directly from the
sensors by motion alone, they require extensive processing. A 3D digital volume
consisting of stacked images is generated as the object is moved in a direction
perpendicular to the sensor ring.
Figure 2.7– Image acquisition
using circular sensor strip
Image Acquisition using Sensor Arrays
Numerous electromagnetic and some ultrasonic
sensing devices frequently are arranged in array format. This is also found in
digital cameras. The response of each sensor is proportional to the integral of
the light energy projected on to the surface of the sensor, a property that is
used in astronomical and other applications requiring low noise images. The key
advantage of 2d sensor array is it can be obtained the complete image by
focusing the energy pattern onto the surface of the array (figure 2.8). Motion is
not necessary in this method.
Figure 2.8 – Image
acquisition using sensor arrays
Simple Image Formation Model
We can denote images by two dimensional function of
the form f(x,y).
The value or amplitude of the f at spatial coordinates
(x,y) is a positive scalar quantity
whose physical meaning is determined by the source of the image.
When an image is generated from a physical process,
its values are proportional to energy radiated by a physical source
(electromagnetic waves). As a consequence, f(x,y)
must be non zero and finite; that is,
0<f(x,y) < ∞ --> (1)
The function f(x,y)
may be characterized by two components;
- Illumination – The amount of source illumination incident on the scenebeing viewed ( i(x,y)).
- Reflectance – The amount of illumination reflected by the objects in the scene (r(x,y)).
The two functions combine as a product to form f(x,y).
f(x,y) = i(x,y) r(x,y) --> (2)
where;
0 < i(x,y) < ∞ --> (3) and
0 < r(x,y) < 1 --> (4) ( 0 – total
absorption, 1 – total reflectance )
The nature of i(x,y)
is determined by the illumination source, and r(x,y) is determined by the characteristics of the imaged objects.
We call the intensity of a monochrome image at any
coordinates (xn,yn)
the gray level (l) of the image
at that point. That is
l = f (x0,y0) --> (5)
From equation (2) through (4), it is evident that l lies in the range
Lmin < l < Lmax--> (6)
In theory, the only requirement of Lmin is that it be
positive, and on Lmax
that it be finite.
In practice Lmin
= imin rmin
and Lmax = imax rmax
The interval [Lmin,
Lmax ] is called the gray scale. Common practice is to
shift this interval numerically to the interval [0, L-1], where l=0 is considered
black and l = L-1 is considered white on the gray scale. All the intermediate
values are shades of gray varying from black to white.
Image Sampling and Quantization
The output of most sensors is a continuous voltage
waveform whose amplitude and spatial behaviors are related to the physical
phenomenon being sensed. To create a digital image, we need to convert the
continuous sensed data into digital form. This involves two processes; sampling
and quantization.
Basic concepts in Sampling and Quantization
To convert image to digital form, we have to sample
the function in both coordinates and in amplitude. Digitizing the coordinate
values is called sampling. Digitizing the amplitude values is called
quantization.
The one dimensional function shown in figure 2.9(b)
is a plot of amplitude (gray level) values of the continuous image alone the line
segment AB in figure 2.9(a). The random variations are due to image noise. To sample
this function, we take equally spaced samples alone line AB, as shown in figure
2.9(c). The location of each sample is given by a vertical thick mark in the
bottom part of the figure. The samples are shown as small white squares
superimposed on the function. The set of theses discrete locations gives the
sampled functions. However, the values of samples still span (vertically) a
continuous range of gray level values. In order to form a digital function, the
gray level values also must be converted (quantized) into direct quantities. The
right side of figure 2.9(c) shows the gray level scale divided into eight
discrete levels, ranging from black to white. The vertical thick marks indicate
the specific values assigned to each of the eight gray levels. The continuous
gray levels are quantized simply by assigning one of the eight discrete gray
levels to each sample. The assignment is made depending on the vertical proximity
of a sample to a vertical thick mark. The digital samples resulting from both
sampling and quantization are shown in figure 2.9(d). Starting at the top of
the image and carrying out this procedure line by line produces a two dimensional
digital image.
Figure 2.9 – Generating a digital image (a)
continuous image (b) A scan line from A to B in the continuous image used to
illustrate the sampling and quantization (c) sampling and quantization (d)
digital scan line
In practice, a method of sampling is determined by
the sensor arrangement used to generate image.
Single sensing element with mechanical motion – The
output of the sensor is quantized in the manner described above. Sampling is
accomplished by selecting the number of individual mechanical increments at
which we activate the sensor to collect data.
Sensor strip – The number of sensors in the strip establishes
the sampling limitations in one image direction. Mechanical motion in the other
direction can be controlled more accurately. Quantization of the sensor outputs
completes the process of generating a digital image.
Sensing array – In this method there is no motion
in image acquisition and number of sensors in the array establishes the limits
of sampling in both directions. Quantization the sensor output is as before. Figure
2.10 illustrate this concept. The quality of the digital image is determined to
a large degree by the number of samples and discrete gray levels used in
sampling and quantization.
Figure 2.10 – continuous image projection to a
sensor array (left) and result of the image sampling and quantization (right)
Representing Digital Images
The result of sampling and quantization is a matrix
of real numbers. Assume that an image f(x,y)
is sampled and so that the resulting digital image has M rows and N columns. The
values of the coordinates (x,y) now
become discrete quantities. We can denote the values of the coordinates at the
origin are (x,y) = (0,0). It is
important to keep in mind that the notation (0,1)
is used to signify the first sample along the first row and so on. It does not
mean that these are the actual values of physical coordinates when the image
was sampled. Figure 2.11 represents the coordinate convention used in this
lesson.
Figure 2.11 –
Coordinate convention used to represent the image
The notation introduced in the preceding paragraph
allows us to write the complete M * N digital image in the following compact
matrix form.
--> (7)
The right side of the equation is by definition a
digital image. Each element of this matrix array is called an image element,
picture element, pixel or pel. In some discussion, it is advantageous to use a
more traditional matrix notation to denote a digital image and its elements;
Cleary f(x,y)
and A are identical matrices.
We can express the sampling and quantization in
more formal mathematical terms. Let Z and R denote the set of real integers and
the set of real numbers, respectively. The sampling process may be viewed as
partitioning the xy plane into a
grid, with the coordinates of the center of each grid being a pair of elements
from the Cartesian product Z2, which is the set of all ordered pairs
of elements (Zi,Zj) with Zi and Zj
being integers from Z. Hence f(x,y) is a digital image if f(x,y) are integers from Z2
and f is a function that assigns a
gray level value (that is a real number from the set of real numbers, R) to
each distinct pair of coordinates (x,y).
If the gray levels also are integers, Z replaces R and the digital image then
become a 2D function whose coordinates and amplitude values are integers.
This digitization process requires decisions about values
for M, N and for the number, L, of discrete gray levels allowed for each pixel.
M and N should be positive and there is no any requirement for it. However due
to processing, storage and sampling hardware considerations, the number of gray
levels typically is the integer power of 2 as expressed below;
L = 2k --> (9)
We assume that the discrete levels are equally
spaced and that they are integers in the interval [0, L-1]. Sometimes the range
of values spanned by the gray scale is called the dynamic range of an image,
and we refer to images whose gray levels span a significant portion of the gray
scale as having a high dynamic range. When an appreciable number of pixels exhibit
this property, the image will have high contrast. Conversely, an image with low
dynamic range tends to have a dull, washed out gray look.
The number of b
of bits required to store a digitized image is
b = M * N * k --> (10)
b = N2 * k --> (11) (when M=N)
Example: If N = 32 and L = 256, what is the value
of b?
If L = 256 then k = 8 because L = 2k
Then b = 32 * 32 * 8 = 8192 bits
When an image can have 2k gray levels,
it is common practice to refer to the image as a “k bit image”. For example an image with 256 possible gray
level values called 8 bit image.
Spatial and Gray Level Resolution
Sampling is the principle factor determining the
spatial resolution of an image. Basically, spatial resolution is the smallest discernible
detail in an image. A widely use definition for resolution is simply the
smallest number of discernible line pairs per unit distance; for example, 100
line pairs per millimeter.
When an actual measure of physical resolution
relating pixels and the level of detail they resolve in the original scene are
not necessary, it is not uncommon to refer to an L level digital image of size
M * N as having a spatial resolution of M * N pixels and a gray level
resolution of L levels.
Figure 2.12 shows an image of size 1024 * 1024
pixels whose gray levels are represented by 8 bits. The other images shown in
figure 2.12 are the result of sub sampling the 1024 * 1024 images. The sub
sampling was accomplished by deleting the appropriate number of rows and
columns from the original image. For example 512 * 512 image was obtained by
deleting every other row and column from the 1024 * 1024 image. The number of
allowed gray levels was kept at 256.
Figure 2.12 – A 1024 *
1024, 8 bit image sub sampled down to size 32 * 32 pixels.
Images in figure 2.12 show dimensional proportions
between various sampling densities, but their size differences make it
difficult to see the effects resulting from a reduction in the number of
samples. The simple way to compare these effects is to bring all the sub sampled
images up to size 1024 * 1024 by row and column pixel replication. The results
are shown in figure 2.13.
Figure 2.13 – Resample images
up to 1024 * 1024
Next, we keep the number of samples constant and
reduce the number of gray levels from 256 to 2, in integer power of 2. Figure 2.14
shows the results of using 452 * 374 CAT projection image displayed with k = 8
(256 gray levels).
Figure 2.14 – Typical effect
of varying the number of gray levels in a digital image
The fourth image of figure 2.14 has an imperceptible
set of very fine ridge like structure in areas of smooth gray levels ( particularly
in the skull). This effect cause by the use of an insufficient number of gray
levels in smooth areas of a digital image, is called false contouring, so caused because the ridges resembles
topographic contours in map. False contouring is generally is quiet visible in
images displayed using 16 or less uniformly spaced gray levels.
Aliasing
Functions whose area under the curve is finite can
be represented in terms of sines and cosines of various frequencies. The sine
cosine component with the highest frequency determines the “highest frequency
content” of the function. Suppose that this highest frequency is finite and
that the function is of unlimited duration (these functions are called band limited functions).
Then the
Shannon’s sampling theorem tells us that, if the function is sampled at
a rate equal to or greater than twice its highest frequency, it is possible to
recover completely the original function from its samples. If the function
is under sampled, then the phenomenon called aliasing corrupts the sampled image. The corruption is in the form
of additional frequency components being introduced into the sampled function.
These are called aliased frequencies.
Note that the sampling rate in image is the number of samples taken (in both
spatial direction) per unit distance. The principle approach for reducing the
aliasing effect on an image is to reduce its high frequency components by blurring
the image prior to sampling. However, aliasing is always present in a sampled image.
The effect of aliased frequencies can be seen under the right conditions in the
form of so called Moir’e patterns.
Zooming and Shrinking Digital Images
Zooming may be viewed as over sampling and
shrinking may be viewed as under sampling. Zooming requires two steps; the
creation of new pixel locations, and the assignment of gray levels to those new
locations. Suppose that we have an image of size 500 * 500 pixels and we want
to enlarge it 1.5 times to 750 * 750 pixels. Conceptually one of the easiest
ways to visualize zooming is laying an imaginary 750 * 750 grid over the
original image. In order to perform the gray level assignment, for any point in
the overlay, we look for the closest pixel in the original image and assign its
gray level to the new pixel in the grid. When we are done with all points in
the overlay grid, we simply expand it to the original specified size to obtain
the zoomed image. This method of gray level assignment is called nearest neighbor interpolation.
Pixel replication is a special case of nearest
neighbor interpolation. Pixel replication is applicable when we want to
increase the size of an image an integer number of times. For instance, to
double the size of an image we can duplicate each column (horizontal direction enlargement)
or row (vertical direction enlargement). Although nearest neighbor interpolation
is fast, it has the undesirable feature that is produces a check board effect that
is particularly objectionable at a high factor of magnification.
More sophisticated way of accomplishing gray level assignment
is bilinear interpolation using four nearest neighbors of a point. Let (x’ y’) denotes
the coordinates of a point in the zoomed image, and let v(x’,y’)denote the gray
level assigned to it. For bilinear interpolation, the assigned gray level is given
by;
v(x’,y’) = ax’ + by’ + c(x’y’) + d --> (12)
where a, b, c, d are determined from the four equations in four unknown that
can be written using the four nearest neighbors of point (x’y’).
Image shrinking is done in similar manner as zooming
and the equivalent process of pixel replication is row column deletion. For example,
to shrink an image by one half, we delete every other row and column.
It is possible to use more neighbors for interpolation.
Using more neighbors implies fitting the points with a more complex surface, which
generally gives a more smoother results (important in 3D graphics and medical image
processing).
Some Basic Relationship between Pixels
Neighbors of Pixels
A pixel p
at coordinates (x,y) has 4 neighbors;
(x+1, y), (x-1, y), (x, y+1), (x, y-1)
These four neighbors are denoted as N4(p)
Four diagonal neighbors of p have coordinates
(x+1, y+1), (x+1, y-1), (x-1, y+1), (x-1, y-1)
And are denoted by ND(p)
Eight neighbors of P denoted as N8(p)
= N4(p) + ND(p)
Adjacency, Connectivity, Regions and
Boundaries
Two pixels are said to be connected, if they are
neighbors and if their gray levels satisfy a specified criterion of similarity.
Let V be the set of gray level values used to define adjacency. In a binary
image V = {1} and in gray scale image V has more elements. For example, in the
adjacency of pixels with a range of possible gray level values 0 to 255, set V
could be any subset of these 256 values. There are three types of adjacency.
4- adjacency – two pixels p and q with values from
V are 4-adjacent if q is in the set N4(p)
8-adjacancy - two pixels p and q with values from
V are 8-adjacent if q is in the set N8(p)
m-adjacency (mixed adjacency) - two pixels p and
q with values from V are m-adjacent if q is in N4(p) or q is in ND(p) and the set N4(p)
intersect N4(q) has no pixels whose values are from V.
Figure 2.15 represents example of m-adjacency. Left
potion of the image represents pixel arrangement and middle image represents pixels
that are 8 adjacent and right image represents m-adjacency.
Figure 2.15 – M- adjacency
Let S represent subset of pixels in an image. Two pixels
p and q are said to be connected in S if there exist a path between them consisting
entirely of pixels in S. For any pixel p in S, the set of pixels that are connected
to it in S is called a connected component
of S. If it only has one connected component, then set is called connected set.
Let R be a subset of pixels in an image. We call R a
region of the image if R is a connected
set. The boundary (a boarder or contour)
of a region R is the set of pixels in the region that have one or more neighbors
that are not in R. Normally when we refer to a region, we are referring to a subset
of an image, and any pixel in the boundary of the region that happen to coincide
with the boarder of the image are included implicitly as part of the region boundary.
The boundary of a finite region forms a closed path and is thus a global concept.
Edges are formed from pixels with derivative
values that exceed a preset threshold. Thus, the idea of an edge is a local concept
that is based on a measure of gray level discontinuity at a point. It is possible
to link edge points in to edge segments, and sometimes these segments are linked
in such a way that correspond to boundaries, but this is not always the case. It
is helpful to think of edges as intensity discontinuities and boundaries are closed
paths.
Distance Measures
For pixels p,
q and z with coordinates (x,y), (s,t) and (v,w), respectively,
D is a distance function or metric if
D(p,q) >= 0 ( D(p,q) = 0 iff p=q )
D(p,q) = D (q,p) and
D(p,z) <= D(p,q) + D(q,z)
The Euclidean
distance between p and q is defined as
De ( p, q) = [
( x - s)2 + ( y-t)2
] ½ -->(13)
The D4 distance (also called city block distance)
between p and q is defined as
D4 (p, q) = | x-s| + | y-t| --> (14)
The D8 distance between p and q is defined as
D8 (p, q) = max(| x-s| , | y-t|) --> (15)
Linear and Nonlinear Operations
Let H be an operator whose input and output are images.
H is said to be linear operator if, any two images f and g and any two scalars
a and b.
H ( af +bg ) = aH(f) + bH(g) --> (16)
An operator whose function is to compute the sum of
K images is a linear operator. An operator that computes the absolute value of the
difference of two images is not. An operator that fails the test of equation (16)
is nonlinear.
Figure 2.17 - (a) Digital dental X-ray image. (b) ROI
mask for isolating teeth with fillings (white corresponds to 1 and black corresponds
to 0). (c) Product of (a) and (b).
Other Important Mathematical Tools for Image Processing
Array versus Matrix Operation
for example consider the following 2 * 2 images
Arithmetic Operations
Arithmetic operations between images are array
operations which means that arithmetic operations are carried out between
corresponding pixel pairs. The four arithmetic operations are denoted as;
s(x,y) = f(x,y) + g(x,y)
d(x,y) = f(x,y) - g(x,y)
p(x,y) = f(x,y) * g(x,y)
v(x,y) = f(x,y) / g(x,y)
It is understood that the operations are performed
between corresponding pixel pairs in f
and g for x = 0,1,2,...., M-1 and y=
0,1,2, ......, N-1 where, as usual, M
and N are the row and column sizes of
the images. Clearly, s,d,p and v are images of size M*N also.
Let g(x,y)
denote a corrupted image formed by the addition of noise. Å‹(x,y), to a noiseless image f(x,y);
that is,
g(x,y) = f(x,y) + Å‹(x,y)
where the assumption is that at every pair of
coordinates (x,y) the noise is
uncorrelated and has zero average value.
The objective of the following procedure is to
reduce the noise content by adding a set of noisy images, {gi(x,y)}. This
is a technique used frequently for image enhancement. If the noise satisfies
the constraints just stated, it can be shown that if an image g'(x,y) is formed
by averaging K different noisy images,
An important application of image averaging is in
the field of astronomy, where imaging under very low light levels frequently
causes sensor noise to render single images virtually useless for
analysis.
A frequent application of image subtraction is in
the enhancement of differences between images. Figure 2.16 represents an
example for the image subtraction.
Figure 2.16
- (a) Infrared image of the land area (b) Image obtained by setting to 0 the least
significant bit of every pixel in (a). (c) Difference of the two images, scaled
to the range [0,255] for clarity.
The mask mode radiography is another example for
the application of image subtraction in medical imaging. Image difference of
this form can be written as;
g(x,y) = f(x,y) - h(x,y)
The net effect of subtracting the mask (h(x,y)) from each sample live image (f(x,y)) is that the areas that are
different between f(x,y) and h(x,y) appear in the output image, g(x,y), as enhanced detail.
An important application of image multiplication
(and division) is shading correction. Suppose that an imaging sensor produces
images that can be modeled as the product of a "perfect image",
denoted by f(x,y), times a shading
function, h(x,y); that is, g(x,y) = f(x,y) h(x,y). If h(x,y) is known, we can obtain f(x,y) by multiplying the sensed image
by the inverse of h(x,y) (i.e.
dividing g by h). If h(x,y) is not
known, but access to the imaging system is possible, we can obtain the
approximation to the shading function by imaging a target of constant
intensity. When the sensor is not available, we often can estimate the shading
pattern directly from the image.
Another common use of image multiplication is in masking,
also called region of interest (ROI) operations. As shown in image 2.17, it contains
multiplying the given image by a mask image that has 1s in the ROI and 0s elsewhere.
Set and Logical Operators
References
Gonzalez, R.C., Woods, R.E., 1992. Digital Image
Processing, 3rd ed. Addison-Wesley Pub (Sd).
Howdy! I know this is somewhat off topic but I was wondering which blog platform are you using for this website?
ReplyDeleteI'm getting fed up of Wordpress because I've had problems with
hackers and I'm looking at alternatives for another platform. I would be fantastic if you could point me in the direction of a good platform.
Here is my site ... buy koutea
google blogger
DeleteThank you for the good writeup. It in reality was once a leisure
ReplyDeleteaccount it. Look complicated to more added agreeable from you!
By the way, how could we be in contact?
Here is my homepage; growth factor 1
Nice post. I used to be checking continuously this weblog
ReplyDeleteand I am inspired! Extremely helpful information particularly the closing section :
) I maintain such information much. I used to be seeking this certain information
for a long time. Thanks and best of luck.
my blog post ... male enhancement facts
Hey there! Do you use Twitter? I'd like to follow you if that would be ok. I'm absolutely
ReplyDeleteenjoying your blog and look forward to new posts.
Also visit my blog post; what is in semenax
Thanks for sharing such a good idea, piece of writing is nice, thats
ReplyDeletewhy i have read it fully
My page ... woodworking advice
What's up, all the time i used to check webpage posts here early in the morning, because i enjoy to learn more and more.
ReplyDeleteAlso visit my web site :: virility ex
Heya i am for the first time here. I found this board and I find It truly useful & it helped me out much.
ReplyDeleteI hope to give something back and aid others like you helped me.
Feel free to surf to my web site blogspot.com
What's up, I log on to your new stuff regularly. Your humoristic style is awesome, keep it up!
ReplyDeletemy blog post - virility Ex
Do you mind if I quote a few of your posts as long as I
ReplyDeleteprovide credit and sources back to your website?
My website is in the very same area of interest as yours and my visitors
would genuinely benefit from a lot of the information
you present here. Please let me know if this ok with
you. Thanks!
My web site; fingernail fungus cures
Greetings! I know this is kind of off topic but I
ReplyDeletewas wondering if you knew where I could find a captcha plugin for
my comment form? I'm using the same blog platform as yours and I'm having trouble finding one?
Thanks a lot!
Feel free to surf to my web page: genf20 plus prices
I don't know whether it's just me or if everyone else experiencing problems with your site.
ReplyDeleteIt appears as though some of the written text within your
content are running off the screen. Can someone else please comment and let me know if this is happening to them as well?
This could be a issue with my internet browser because I've had this happen before. Thank you
Feel free to surf to my blog post: http://virilityexstore.net
You have made some really good points there.
ReplyDeleteI looked on the internet for more info about the issue and found most people will go
along with your views on this website.
my website: buy virility ex
It's actually very complicated in this full of activity life to listen news on Television, so I simply use internet for that purpose, and get the hottest news.
ReplyDeleteHere is my homepage :: zetaclear
This is the perfect web site for anyone who would like to understand this topic.
ReplyDeleteYou know so much its almost hard to argue with you (not that I personally will need to…HaHa).
You definitely put a brand new spin on a topic that has been written
about for years. Great stuff, just excellent!
My web page ... provillusstore.net
If some one wants expert view on the topic of running a blog after that i propose him/her to pay a
ReplyDeletevisit this blog, Keep up the fastidious job.
my web blog - provillus
Although these pills are over-the-counter pills and do not require your doctor's permission but to be on the safety side there is no harm is consulting him to know about proper dosage and suitability to your body. And if is is, indeed, worth all the attention, then you may be wondering why it is worthy of such attention. Merely you can consume Cialis to fight against this erection problem to provide your partner what she actually requires from you.
ReplyDeleteMy webpage :: vigrx plus how to use
Hi there, You've done a great job. I will certainly digg it and personally recommend to my friends. I'm sure they will be benefited
ReplyDeletefrom this site.
Feel free to visit my webpage buy acnezine
Hi there colleagues, how is everything, and what you wish for to say about
ReplyDeletethis article, in my view its actually amazing in favor of me.
My weblog ... smoke deter pill system
I'm curious to find out what blog system you are using? I'm having some minor security problems with my latest website
ReplyDeleteand I'd like to find something more safe. Do you have any solutions?
Here is my webpage - smokedeter.herbalcurenow.com
Hello! I could have sworn I've visited this blog before but after looking at many of the posts I realized it's new to me.
ReplyDeleteNonetheless, I'm definitely happy I found it and I'll be bookmarking it and checking back often!
Look at my web site buy genf20 plus
Hi there, You've done a great job. I will definitely digg it and personally recommend to my friends. I am sure they will be benefited from this website.
ReplyDeleteFeel free to surf to my homepage breast actives customer reviews
A person necessarily help to make seriously articles I would state.
ReplyDeleteThat is the first time I frequented your web page and up to now?
I surprised with the analysis you made to create this actual put
up incredible. Wonderful task!
my blog post :: buy breast actives
Fastidious replies in return of this difficulty with real arguments and explaining all regarding that.
ReplyDeleteHere is my web site: buy Breast actives
Ahaa, its pleasant dialogue on the topic of this post here at this weblog, I have read all that,
ReplyDeleteso at this time me also commenting at this place.
Also visit my web blog: best weight losing supplements
Hello there! I know this is kinda off topic but I was wondering which blog platform are you using
ReplyDeletefor this website? I'm getting fed up of Wordpress because I've had issues with hackers and I'm looking at alternatives for another platform. I would be awesome if you could point me in the direction of a good platform.
Here is my weblog ... losw weight
Do you mind if I quote a couple of your articles as long as I
ReplyDeleteprovide credit and sources back to your blog?
My blog is in the exact same niche as yours and my visitors
would really benefit from some of the information you present here.
Please let me know if this ok with you. Regards!
Feel free to surf to my webpage; buy meratol
That is very interesting, You're a very professional blogger. I've joined your rss
ReplyDeletefeed and look forward to searching for extra of your excellent post.
Additionally, I've shared your website in my social networks
Look into my web-site http://bowtrol.herbalcurenow.com
Excellent post. Keep writing such kind of info on your
ReplyDeletepage. Im really impressed by it.
Hello there, You've done a great job. I'll definitely digg it and for my part suggest to my friends.
I'm sure they'll be benefited from this website.
Also visit my webpage; buy idol lip